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ABSTRACT

In this contribution, we aldress the general problem of
noise reduction for speed signal. We propose anew filter
designed in the frequency domain by taking into account
adua analysis frame but also previous frames. We
compared our solution with the dassicd Wiener filter
designed by the analysis of a unique adua frame. The
proposed approach provides aso new highlights on the
empiricd Ephraim and Malah a priori SNR estimator
which is commonly used in pradice

1. INTRODUCTION

Noise is part of our daily redity but if noise can give an
pleasant sensation (feeling of an atmosphere), too much
noise or aggressve noise involve tiredness and
misunderstanding of speed.. As a result, in many
applications such as telecmmunication or heaing aids,
noise reduction is mandatory.

Most of the atual solutions are based on a well-known
family of speed enhancement algorithms: short-time
spedral attenudion dgorithms where the analysis is
performed in the frequency domain. They attempt to
estimate the short-time spedral magnitude of the speed
S(m,f,) by applying an atenuation G(m,f) to eah
short-time Fourier transform coefficients of the noisy
speed Y(m, f,) at framem:

S(m, f,) =G(m, f,) Y(m, f,)

where f, represents the K" spedral component.

Various noise reduction systems have been proposed
depending on the dosen suppresson rule. In order to
provide a @mmon theoreticd basis for relating these
algorithms, it has been found useful to analyze these noise
reduction filters for a given frame of data of length
T =20ms where quasi-stationarity of the speed is
ensured. Conversely, most of these noise reduction
systems use in pradice estimators that are computed from
the knowledge of previous frames (for example magnitude
averaging). The dgorithm presented in this article has the
advantage of taking into acwmunt the previous frames
diredly during the filter’s design, involving lessempirical
estimations. In Sedion 2 we derived the Least Square (LS)
amplitude estimator and we discuss about the asymptotic

behavior of the filter. We dso dscuss the eplicit
connedion of the proposed LS approach to the so-cdled
Ephraim and Malah a priori SNR estimator proposed in
[1]. This interpretation will be discused in Sedion 3.
Finaly, Sedion 4 presents comparative experimental
results of this new algorithm.

2. LEAST SQUARE AMPLITUDE ESTIMATOR

In this Sedion, we analyze the spedral attenuation
problem through the minimization of the LS criterion. It
has the alvantage to focus our analysis on the successon
of input frames whereas most noise suppresson rules are
based on the analysis of a single frame of length T. To
analyzethe LS approach, we asaume that all processs are
stationary, and we introduce the foll owing assumptions:
(A1) The Fourier expansion coefficients of each processis
statisticdly independent
(A2) The observation signal is considered as the sum of a
useful signal S(m, f,) and anoisesignal N(m, f,)
(A3) The spedral components of the useful signal and the
noise ae uncorrelated.

2.1. Optimal L Sfilter

Let us defined a st function as the weighting of the
sguared errors computed over successive frames :

In(e(f) = 3 A, ) @

with the aror on the frame | defined as:

e(l, fi) =S, fi) = (1, )
Note the analogy with the LS algorithm applied in the time
domain, with the difference that we ded here with a
successon of framesin the frequency domain.
With the following rotations for vedors:
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the aror function becomes :
J.(e(f) =E"(m, f)E(m, f,) 3)

Under assumption (A1), and asauming that the phase of
the noisy speed is not processed, based on the assumption
that phase distortion is not perceived by the human ea, we
can write:

S(m, f,) =Y(m ) Gs(m. f,)

It is mandatory to note that in this last expression, for a
given frequency f,, Gs(m f,) isascdar function of the
frame index m, whereas E(m f,), S(m f,). S(m f,) and
Y(m, f,) arevedorsof dimension m.
Considering (2) and (3) the st function J,,(e(f,)) canbe
expressd thanks to the variablessS(m, f,), G s(m, f,), and
Y(m, f,) asfollowed :

J.(e(f) = (S(m, £,)- Y (M, £,) Gs(m, £,)"

(S(m: fk) - Y(m1 fk) GLS(ml fk))
The resolution of the equation 0J,/0G =0 gives us the
filter G s(m, f,) minimizing the eror function J.,. This
leads to the foll owing equation :
Y (m, £)Y(m, £)Gg(m, f,) =Y"(m, f,)S(m, f,)

As aresult when iAm"YZ(I, f)#0 (which is the cae for

non silent periods), we an write:

m

z/\m"v* {, £)s(0, )
Gs(m, f,) == m
z/\m"Yz(l,fk)

_ Num(m, f,)
- Denm, f,)

Using assumption (A2) in the numerator and denominator
of thisequation leadsto :

Num(m, f,) = i)«m" S, £ )+ i/\m" s{, fN(, )

Den(m, f,) = ix\m' s, fk)+§}\m' N2, f,)
=0 =0

+2Reﬁi/\m' s, f N, fk)E

Moreover, assuming ergodicity, we can noticethat :

m
im S A™'S(, AN, £) = = an(m £)

=0
where y.,(m, f,) isthe aosspower spedrum between the

noise and the useful signal. As aresult, when m>>1 and
by exploiting the hypothesis (A3) that the useful signal

and the noise ae uncorrelated (y,,(f,) =0), the following
approximation of thefilter G ¢(m, f,) isobtained :

2/\""-'520, £)
Gs(m, f,) =— -

5 ATIS0, 1)+ Z/\m-'Nz(l, £)

(4)

2.2. Asymptotic behavior

One can note the similarity between G ¢(m, f,)in (4) and
the Wiener filtering [2] expressd as.
Ys(m, f,)
Yo(m, £) + Y (m, £,)
__SNRum )

1+ NR,;0 (M, f )
where the a priori Signal to Noise Ratio (SNR) is define
as.

GWiene(mv fk) =

©)

Ys(m f,)
NR.. , fk — st T K7
Rprm(m ) ynn(ml fk)

Inded, the filter expressed in (4) can be seen as a Wiener
filter where the estimations of the power spedral densities
ys(f) and y,.(f,) ae defined by the following

expresson (ergodicity hypathesis), with m>>1 :
u(m f) = (1—/\);)«"*-' ud, f)°, U D{S,N} (6)

If we dso define the a priori Signal to Noise Ratio
estimator as:

X _Ys(m f)
NR rio(m, f ) - ASS (7)
’ “ ynn(ml fk)
for m>>1, (4) leads to similar formula &sin (5):
Gs(m, f,) = Valm. 1)

Vg(mv fk) + ynn (ml fk)
A
_ S\lRprio(m, fk)
=
1+ S\lRprio(m, fk)

Inthislast expresson, it is remarkable that the estimations
of psd are derived from (4), i.e. during the initial design
phase of the filter, whereas they do not appea diredly in
most of noise suppresson rules snce their analysis is
based on a single frame. Most of the time, the problem of
estimating the parameters which are involved in a given
suppresson rule is often empiricd, and is addressed in a
seoond step after the derivation of the theoreticd filter
expresson. In the gproach presented in this paper, they
are direaly defined through the mathematicd design of
the weighting rule. In the next sedion, we lay out the
stresson this property by demonstrating that the a priori
SNR estimator proposed in [1] can be partidly
rediscovered thanks to the previous LS analysis.



3. APRIORI SNR ESTIMATOR

The derivation of the a priori SNR estimator is based on
the definition (7) which can be expressed as:

m-1
/\m_HSZ(| f )
A 2 1 Tk
S\lRprio(m, fk) - S (m7 fk) +A %
ZA’“"NZ(I, f) ZA’“"NZ(I, f)

®
Using in the &ove eguation the following equality

Vo (M, £) = (1—)\)2)\"‘" N?(, f,), we have dso
=0
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©)

Inserting (4) in the right-hand term of this relation, and
assuming that m>>1, it foll ows that

m-1
/\m—l—ISZ I, f
(.1 __Gi(m-11,)

iAm-l-lNZ(L f) B 1-G(m-11,)

(10
- Gs(m-1f)Y(m-1f,)
[1_GLS(m_ll fk)]Y(m_l fo)
Moreover, making the foll owing approximation :

Y(m, ) = S(m, f,) + VY (m, f,)

which is similar to the maximum likelihood estimate of
the speedr spedrum in the method o the spedra
amplitude subtracion, we can write:

[1-Gs(m-1 f)]Y(m=-1,f,) = (S(M-1 £,) +fy(M-1 1) )

- GLs(m_lv fk)Y(m_l fk)
= (S(m-1,1) - 8(m-11,)) +\Jymm-11,)
= JYm(m=-11,) (11

Combining (11) and (10), and substituting (10) in (9), and
using the foll owing definition for the a pasteriori SNR
S*(m, f,)
ynn(m’ fk)
it can be verified that the a priori SNR can be etimated
through areaursive gproach whichis given by
SNR, (M, f,) = (1~ A) SNR,. (M, T,)
+A Gis(m-1f)Y(m-1f,)
Wm(m-11,)

Noting that S(m-1,f,)=G,(m-1 f,)Y(m-1f), we see
that relation (12) uses the amplitude estimator of the
(n-)™ frame instead of the amplitude itself in the nth
frame. Thus, the proposed estimator (12) corresponds to a

R (M, f) =

12

“dedsion-direded” approadh, since SNF%,iO(m, f,) is
updated on the basis of a previous amplitude etimate. It is
interesting to note that Ephraim and Malah find the
following corresponding expression for the a priori SNR
estimator [1]:

NRyi6 (M, ) = (1= B) NR, (M, f,)
G,%(m-1,f)Y*(m-1,f,)
ynn(ml fk)

which was obtained from an empiricad weighted averaging
between two pdential estimates of the a priori SNR, and
was found to be very useful when it is combined with the
MM SE amplitude estimator (see[1], [3]). Comparing (12)
and (13), we seethat the difference mnsists only on taking
into acount amplitudes instead of squared amplitudes in
the second term of both expressions. The influence of this
differenceis discussed in the next sedion. The interest of
such asimilarity between relations (12) and (13) liesin the
fad that the a priori SNR estimator proposed in [1] can be
interpreted as resulting from a minimizaion of a least
sguared criterion.

Such an interpretation all ows a better understanding of the
Ephram and Malah short-time amplitude (EMSA)
estimator. Optimal values of the parameter g are usualy
found by simulations only. To provide an efficient noise
reduction and an enhanced speed with colorlessresidual
noise, values of g sufficiently close to one
(B =0,96-0.98) are usually required ([1], [3]). From our
LS interpretation, such values correspond to the
introduction in (1) of a forgetting fador A nea unity.
Thus, the st function J,(.) is mainly influenced by the
previous successive short-time frames and, as a result,
time variations of the noise reduction filter in (4) are
highly smoothed. These remarks were drealy given in [3]
where the behavior of the EMSA estimator is investigated.
However, the least sguare @proach highlights the
understanding of the mechanisms that counter the musica
noise by considering a st function J () with

exponential  windowing of the frame-by-frame eror
sequence {e(l, f,)} .
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4. EXPERIMENTAL RESULTSAND DISCUSSIONS

To compare the estimators introduced in the previous
sedion, we propose in this edion to analyze the behavior
of the Wiener filter Gyiene(m f,) presented in (5) as a
function of the SNR,;, (m, f,) (either thanks to the EMSA
estimator (13) or to the one derived from the LS analysis
(12). The figures Fig-1 shows the variations of
Guieer (M, f,) &s a function of the a posteriori Signal to

Noise Ratio SNR,(f,) and of the following SNR



*(m-1f) Y*(m-1f,)

Yn(M=1f,)
parameter can be cnsidered as a Signa to Noise Ratio
estimated on the previous frame (m-1).

These graphs show that the behavior of the filter
Guiene (M, f,) 1S few dependant on the estimator when

NR, (M, f) or SNR, (m, f,) are greder than -5 dB.

Conversely, when both SNRs are low, the dtenuation
provided by the EMSA estimator is greder than the one
derived from the least square analysis. That means that
when the noise is preponderant in the noisy signal
Y(m, f,), the least square analysis will give a smaller

attenuation than the empiricd analysis of EMSA
estimator.
Nevertheless except this last case, the behavior of G,

is not so affeded by the sguare fador difference
previously noted in Sedion 3 between the two estimators.
This pradicdly justified low difference between the two
estimators provides a true justification of the use of the LS
analysis as an explanation of (13). It also justifies the
remarks and comments made in the previous sdion.

5. SUMMARY

In this article, a new method for noise reduction is
proposed. It is based on the minimizaion of the LS
amplitude aiterion computed in the frequency domain on
the successive short-time frames of analysis. The proposed
approach has the alvantage of taking into acount the
previous frames diredly during the filter's design,

NR,., (M-1, f,) = S . This last

involving less empiricd estimations than common noise
suppresson rules. Thanks to few assumptions, we have
shown that the LS approach highlights the understanding
of the medhanisms that counter the musicd noise
phenomenon and also enlightens the so-called Ephraim
and Malah a priori SNR estimator. Finally, experimental
results given for the Wiener suppresson rule, show that
the SNR estimator derived from the propcsed LS analysis
provides smilar behavior than the Ephraim and Malah a
priori SNR estimator. As a result by using the LS filter
described in this article, the same filtering properties
obtained by combining Wiener filter and Ephraim and
Malah estimator are expeded, namely a good trade-off
between the level of musicd noise in the enhanced speech
and the distortion brought on the useful speed.

6. REFERENCES

[1] Y. Ephraim, D. Malah, “Speech Enhancement using
Optimal Non-linea Spedral Amplitude Subtradion,” in
Proc. ICASS'83, pp. 1118-1121, 1983.

[2] S.V. Vaseghi. Advanced Sgnal Processng and Digital
Reduction, Chapter 9, Wiley Teubner Communication,
Queen’'s University Belfast, UK, 1996

[3] O. Cappé, “Elimination of Musical Tone with the
Ephraim and Malah Suppressor,” in |IEEE Trans. ASS,
No.2, pp. 345-349, April 1994

Fig.1- Parametric gain curves describing Wiener gain functions behavior using estimators defined by (12) and (13).
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