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ABSTRACT

In this contribution, we address the general problem of
noise reduction for speech signal. We propose a new filter
designed in the frequency domain by taking into account
actual analysis frame but also previous frames. We
compared our solution with the classical Wiener filter
designed by the analysis of a unique actual frame. The
proposed approach provides also new highlights on the
empirical Ephraim and Malah a priori SNR estimator
which is commonly used in practice.

1. INTRODUCTION

Noise is part of our daily reality but if noise can give an
pleasant sensation (feeling of an atmosphere), too much
noise or aggressive noise involve tiredness and
misunderstanding of speech. As a result, in many
applications such as telecommunication or hearing aids,
noise reduction is mandatory.
Most of the actual solutions are based on a well-known
family of speech enhancement algorithms: short-time
spectral attenuation algorithms where the analysis is
performed in the frequency domain. They attempt to
estimate the short-time spectral magnitude of the speech
ˆ( , )kS m f  by applying an attenuation ),( kfmG  to each

short-time Fourier transform coefficients of the noisy
speech ),( kfmY  at frame m:

ˆ( , ) ( , ) ( , )k k kS m f G m f Y m f=

where kf  represents the kth spectral component.

Various noise reduction systems have been proposed
depending on the chosen suppression rule. In order to
provide a common theoretical basis for relating these
algorithms, it has been found useful to analyze these noise
reduction filters for a given frame of data of length

20msT ≈  where quasi-stationarity of the speech is
ensured. Conversely, most of these noise reduction
systems use in practice estimators that are computed from
the knowledge of previous frames (for example magnitude
averaging). The algorithm presented in this article has the
advantage of taking into account the previous frames
directly during the filter’s design, involving less empirical
estimations. In Section 2 we derived the Least Square (LS)
ampli tude estimator and we discuss about the asymptotic

behavior of the filter. We also discuss the explicit
connection of the proposed LS approach to the so-called
Ephraim and Malah a priori SNR estimator proposed in
[1]. This interpretation will be discussed in Section 3.
Finally, Section 4 presents comparative experimental
results of this new algorithm.

2. LEAST SQUARE AMPLITUDE ESTIMATOR

In this Section, we analyze the spectral attenuation
problem through the minimization of the LS criterion. It
has the advantage to focus our analysis on the succession
of input frames whereas most noise suppression rules are
based on the analysis of a single frame of length T. To
analyze the LS approach, we assume that all processes are
stationary, and we introduce the following assumptions:
(A1) The Fourier expansion coefficients of each process is

statistically independent
(A2) The observation signal is considered as the sum of a

useful signal ),( kfmS  and a noise signal ),( kfmN

(A3) The spectral components of the useful signal and the
noise are uncorrelated.

2.1. Optimal LS filter

Let us defined a cost function as the weighting of the
squared errors computed over successive frames l:
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with the error on the frame l defined as :

),(ˆ),(),( kkk flSflSfle −=

Note the analogy with the LS algorithm applied in the time
domain, with the difference that we deal here with a
succession of frames in the frequency domain.
With the following notations for vectors:
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the error function becomes :

( ( )) ( , ) ( , )H
m k k kJ e f m f m f= E E (3)

Under assumption (A1), and assuming that the phase of
the noisy speech is not processed, based on the assumption
that phase distortion is not perceived by the human ear, we
can write :

LS
ˆ ( , ) ( , ) ( , )k k km f m f G m f=S Y

It is mandatory to note that in this last expression, for a
given frequency kf , LS( , )kG m f  is a scalar function of the

frame index m, whereas ( , )km fE , ( , )km fS . ˆ ( , )km fS  and

( , )km fY  are vectors of dimension m.

Considering (2) and (3) the cost function ))(( km feJ  can be

expressed thanks to the variables ( , )km fS , LS( , )kG m f , and

( , )km fY  as followed :
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The resolution of the equation LS 0mJ G∂ ∂ =  gives us the

filter LS( , )kG m f  minimizing the error function mJ . This

leads to the following equation :
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Using assumption (A2) in the numerator and denominator
of this equation leads to :
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Moreover, assuming ergodicity, we can notice that :
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where ),( ksn fmγ  is the cross-power spectrum between the

noise and the useful signal. As a result, when 1>>m  and
by exploiting the hypothesis (A3) that the useful signal

and the noise are uncorrelated ( 0)( =ksn fγ ), the following

approximation of the filter LS( , )kG m f is obtained :
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2.2. Asymptotic behavior

One can note the similarity between LS( , )kG m f in (4) and

the Wiener filtering [2] expressed as:
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where the a priori Signal to Noise Ratio (SNR) is define
as:
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Indeed, the filter expressed in (4) can be seen as a Wiener
filter where the estimations of the power spectral densities

)( kss fγ  and )( knn fγ  are defined by the following

expression (ergodicity hypothesis), with 1>>m  :
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If we also define the a priori Signal to Noise Ratio
estimator as :
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for 1>>m , (4) leads to similar formula as in (5):

ss
LS

ss nn

prio

prio

ˆ ( , )
( , )

ˆ ˆ( , ) ( , )

( )
                     

1 ( )

k
k

k k

k

k

m f
G m f

m f m f

SNR m, f

SNR m, f

γ
γ γ

Λ

Λ

=
+

=
+

In this last expression, it is remarkable that the estimations
of psd are derived from (4), i.e. during the initial design
phase of the filter, whereas they do not appear directly in
most of noise suppression rules since their analysis is
based on a single frame. Most of the time, the problem of
estimating the parameters which are involved in a given
suppression rule is often empirical, and is addressed in a
second step after the derivation of the theoretical filter
expression. In the approach presented in this paper, they
are directly defined through the mathematical design of
the weighting rule. In the next section, we lay out the
stress on this property by demonstrating that the a priori
SNR estimator proposed in [1] can be partially
rediscovered thanks to the previous LS analysis.



3. A PRIORI SNR ESTIMATOR

The derivation of the a priori SNR estimator is based on
the definition (7) which can be expressed as:
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Using in the above equation the following equali ty
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Inserting (4) in the right-hand term of this relation, and
assuming that 1>>m , it follows that
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Moreover, making the following approximation :

( , ) ( , ) ( , ) k k nn kY m f S m f m fγ≈ +

which is similar to the maximum likelihood estimate of
the speech spectrum in the method of the spectral
ampli tude subtraction, we can write:
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Combining (11) and (10), and substituting (10) in (9), and
using the following definition for the a posteriori SNR
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it can be verified that the a priori SNR can be estimated
through a recursive approach which is given by
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Noting that LS
ˆ( 1, ) ( 1, ) ( 1, )k k kS m f G m f Y m f− = − − , we see

that relation (12) uses the amplitude estimator of the
th)1( −n  frame instead of the amplitude itself in the nth

frame. Thus, the proposed estimator (12) corresponds to a

“decision-directed” approach, since prio
ˆ ( , )kSNR m f  is

updated on the basis of a previous ampli tude estimate. It is
interesting to note that Ephraim and Malah find the
following corresponding expression for the a priori SNR
estimator [1]:
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which was obtained from an empirical weighted averaging
between two potential estimates of the a priori SNR, and
was found to be very useful when it is combined with the
MMSE ampli tude estimator (see [1], [3]). Comparing (12)
and (13), we see that the difference consists only on taking
into account ampli tudes instead of squared ampli tudes in
the second term of both expressions. The influence of this
difference is discussed in the next section. The interest of
such a similarity between relations (12) and (13) lies in the
fact that the a priori SNR estimator proposed in [1] can be
interpreted as resulting from a minimization of a least
squared criterion.
Such an interpretation allows a better understanding of the
Ephraim and Malah short-time ampli tude (EMSA)
estimator. Optimal values of the parameter β  are usually
found by simulations only. To provide an eff icient noise
reduction and an enhanced speech with colorless residual
noise, values of β  sufficiently close to one
( 0,96 0.98β ≈ − ) are usually required ([1], [3]). From our

LS interpretation, such values correspond to the
introduction in (1) of a forgetting factor λ  near unity.
Thus, the cost function (.)mJ  is mainly influenced by the

previous successive short-time frames and, as a result,
time variations of the noise reduction filter in (4) are
highly smoothed. These remarks were already given in [3]
where the behavior of the EMSA estimator is investigated.
However, the least square approach highlights the
understanding of the mechanisms that counter the musical
noise by considering a cost function (.)mJ  with

exponential windowing of the frame-by-frame error
sequence { }( , )ke l f .

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

To compare the estimators introduced in the previous
section, we propose in this section to analyze the behavior
of the Wiener filter ),( kWiener fmG  presented in (5) as a

function of the ),( kprio fmSNR  (either thanks to the EMSA

estimator (13) or to the one derived from the LS analysis
(12)). The figures Fig-1 shows the variations of

Wiener ( , )kG m f  as a function of the a posteriori Signal to

Noise Ratio )( kpost fSNR  and of the following SNR
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parameter can be considered as a Signal to Noise Ratio
estimated on the previous frame ( 1)m− .

These graphs show that the behavior of the filter

Wiener ( , )kG m f  is few dependant on the estimator when

post ( , )kSNR m f  or prev ( , )kSNR m f  are greater than -5 dB.

Conversely, when both SNRs are low, the attenuation
provided by the EMSA estimator is greater than the one
derived from the least square analysis. That means that
when the noise is preponderant in the noisy signal

),( kfmY , the least square analysis will give a smaller

attenuation than the empirical analysis of EMSA
estimator.
Nevertheless, except this last case, the behavior of WienerG

is not so affected by the square factor difference
previously noted in Section 3 between the two estimators.
This practically justified low difference between the two
estimators provides a true justification of the use of the LS
analysis as an explanation of (13). It also justifies the
remarks and comments made in the previous section.

5. SUMMARY

In this article, a new method for noise reduction is
proposed. It is based on the minimization of the LS
ampli tude criterion computed in the frequency domain on
the successive short-time frames of analysis. The proposed
approach has the advantage of taking into account the
previous frames directly during the filter’s design,

involving less empirical estimations than common noise
suppression rules. Thanks to few assumptions, we have
shown that the LS approach highlights the understanding
of the mechanisms that counter the musical noise
phenomenon and also enlightens the so-called Ephraim
and Malah a priori SNR estimator. Finally, experimental
results given for the Wiener suppression rule, show that
the SNR estimator derived from the proposed LS analysis
provides similar behavior than the Ephraim and Malah a
priori SNR estimator. As a result by using the LS filter
described in this article, the same filtering properties
obtained by combining Wiener filter and Ephraim and
Malah estimator are expected, namely a good trade-off
between the level of musical noise in the enhanced speech
and the distortion brought on the useful speech.
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Fig.1− Parametric gain curves describing Wiener gain functions behavior using estimators defined by (12) and (13).
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